

Background: Additive Manufacturing

- The primary objective of this interdisciplinary MTech is address the gap between the emerging Additive Manufacturing (AM) applications and lack of trained engineers in this field.
- The course is designed to equip students to understand and advance AM by combining fundamental understanding of the underlying science along with as specialized study of different processes and technologies.
- The course will also focus on capturing the interdisciplinary nature of the AM through providing provide hands-on experience with designing, adapting and building parts using current AM technology.
- It leverage the strong eco-system of AM research at IITH, thus providing the students an opportunity to carry on research in a variety of AM Applications.

Course Outline

Course Structure

Sem-1	Fundamentals of Additive Manufacturing	3
	Product Design and Prototyping	2
	Biofabrication	2
	Materials Science of Additive Manufacturing	2
	Basket-1: Systems Integration for AM	Any 3
	Life Cycle Analysis (1cr)	credits
	Elasticity & Plasticity (1.5cr)	
	Computational Tools for Geometric Modelling (1.5cr)	
	Basket-2: Computational Tools for AM	
	Finite Element Methods (3Cr)	
	Reverse Engineering (1cr)	
	Basket-3: Applications- Bio-AM	
	Biomaterials- Materials in Medicine (3cr)	
	Lab on Chip (1cr)	
	BioDevices (2cr)	
	Basket-4: Applications- Metal-AM	
	Materials Synthesis and Characterization (3cr)	
	Powder Metallurgy Manufacturing (3cr)	
	Mechanical behaviour of materials (2cr)	
	Sub-Total =	12
Sem-2	AM Processes Lab	1
	Biofabrication Lab	1
	Basket-1: Systems Integration for AM	Any 10
	Fiuld Mechanics and Heat Transfer (1.5cr)	creaits
	3D Printed Microfuidlics (2cr)	
	Design for AM (1cr)	
	Industry 4.0 (1.5cr)	
	Basket-2: Computational Tools for AM	
	Finite Element Analysis (3cr)	
	Advanced Topics in Mathematical Tools (3cr)	
	Topology Optimization with AM (1cr)	
	Backet-3: Applications- Bio-AM	
	Biomicrofluidics (2cr)	
	Tissue Engineering (2cr)	
	3D Printing in Medicine (2cr)	
	Basket-4: Applications- Metal-AM	
	Advanced Material Joining Processes (1.5cr)	
	Thermo-mechanical processing of Materials (3cr)	
	Microstructural Design for Advanced Manufacturing (3cr)	
	Metal Additive Manufacturing Metallurgy (3cr)	15
-	Sub-Total =	12
Common	English for Communication	1
Thesis	Industry Lectures	1
Inesis	mesis (Z ^{ing} Year)	24
	TOTAL =	50

AM at IIT Hyderabad

Teaching/Courses

- •More than 300 students taught 3D Printing every year
- •Both UG and PG level courses

Outreach

- •Regular TEQIP courses on AM
- •Tailored AM workshops for Industry including Cyient, Tata Steel etc.

Equipment

•Wide array of AM-processes for Metal, BioMedical, Composites, Polymers, Multi-colour.

Faculty

•More than 15 faculty working in AM, spanning Biomedical, Chemical, Design, Material Science and Mechanical

Conferences

•Three events of International Conferences co-organized together with Keio University, Japan and Deakin University, Australia

Projects

•More than 10 ongoing projects on AM, with value of projects more than 400lakhs.

Eligibility & Admission Procedure

- **MHRD Fellowship**: Candidates with valid GATE score in {AE, ME, MT, PI, BM, BT, CH, XL} and a BTech/BE in the relevant field. For IIT Undergraduates with a CGPA of 8.0 or above, GATE is not essential. Admission based on GATE Score of Candidates.
- **Self-Sponsored**: Candidates having BTech/BE in relevant field of Engineering and Technology with minimum CGPA of 7.0 or equivalent. This is a non-subsidized program and no financial support is provided to the students. The fee for this program is approximately 10 Lakh rupees for two years. For self-sponsored program, GATE score is not mandatory. Admission will be based on Written Test and Interview.
- Govt. Lab/ Public Sector Sponsored: This is meant for candidates working in Government or Public sector institutes (including armed forces officials) with more than 2-year experience and having a basic BTech/BE degree in relevant field. GATE score is not mandatory in this category. Admission will be based on Written Test and Interview.
- For more information, please contact: Prof. G. D. Janaki Ram <u>jram@msme.iith.ac.in</u> Dr. S. Suryakumar <u>ssurya@mae.iith.ac.in</u>

